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Hydrodesulfurization (HDS) is the critical industrial process by
which sulfur is removed from compounds present in crude petroleum
feedstocks prior to their use as fuel.1,2 Of these compounds, thiophenes
belong to the class of molecules that are most resistant towards HDS,
such that they feature prominently in model studies to provide
mechanistic insight into the industrial process.2,3 Since molybdenum
is an essential component of an HDS catalyst, it is of particular
relevance to define its coordination chemistry with respect to thiophenes.
In this regard, we have demonstrated that [Me2Si(C5Me4)2]MoH2 and
Mo(PMe3)6 exhibit interesting reactivity towards thiophene, including
examples of κ1-coordination, η5-coordination, C-S bond cleavage,
and formation of a butadiene-thiolate derivative.4,5 Here we describe
the reactivity of Mo(PMe3)6 towards benzothiophene and selenophenes
that reveals new pathways which are relevant to mechanisms of
hydrodesulfurization.

We previously demonstrated that Mo(PMe3)6 reacts with thiophene
to give the isomeric η5-thiophene and butadiene-thiolate com-
plexes, (η5-C4H4S)Mo(PMe3)3 and (η5-C4H5S)Mo(PMe3)2(η2-
CH2PMe2), respectively. We now report that the corresponding
reaction of Mo(PMe3)6 with benzothiophene follows a different
course, thereby increasing our knowledge of the array of organic
species that may exist and interconvert on the surface of an HDS
catalyst. Specifically, Mo(PMe3)6 cleaves the C-S bond of ben-
zothiophene to give paramagnetic (κ2-CHCHC6H4S)Mo(PMe3)4 (1),
which rapidly isomerizes to the olefin-thiophenolate and 1-metallacy-
clopropene-thiophenolate complexes, (κ1,η2-CH2CHC6H4S)Mo-
(PMe3)3(η2-CH2PMe2) (2) and (κ1,η2-CH2CC6H4S)Mo(PMe3)4 (3),
as illustrated in Scheme 1. While (κ2-CHCHC6H4S)Mo(PMe3)4 (1)
is simply the product of C-S bond cleavage,6 (κ1,η2-CH2CHC6H4S)-
Mo(PMe3)3(η2-CH2PMe2) (2) and (κ1,η2-CH2CC6H4S)Mo(PMe3)4

(3) are the results of more complex sequences involving hydrogen
transfers, such that the termini of the thiolate fragments coordinate
Via η2-olefin7 and η2-vinyl8,9 modes, respectively. Of particular
note, the latter coordination mode is without precedent for
complexes derived from benzothiophene.10

The composition of the thiolate ligand of (κ1,η2-CH2CHC6H4S)-
Mo(PMe3)3(η2-CH2PMe2) (2) bears a close analogy to that of (η5-
C4H5S)Mo(PMe3)2(η2-CH2PMe2), in the sense that both are a result
of C-S cleavage and hydrogen transfer. An important difference,
however, resides with their coordination modes. Thus, whereas the
ligand derived from thiophene coordinates in a flat η5-manner (i.e., as
a butadiene-thiolate ligand), that derived from benzothiophene
coordinates in a puckered κ1,η2-manner (i.e., as an olefin-thiolate
ligand).11 As a corollary of the different coordination modes, (κ1,η2-
CH2CHC6H4S)Mo(PMe3)3(η2-CH2PMe2) (2) possesses an additional
PMe3 ligand to maintain an 18-electron configuration.

The relative amounts of (κ1,η2-CH2CHC6H4S)Mo(PMe3)3(η2-
CH2PMe2) (2) and (κ1,η2-CH2CC6H4S)Mo(PMe3)4 (3) in the product
mixture depend critically on the reaction conditions. For example,
(κ1,η2-CH2CHC6H4S)Mo(PMe3)3(η2-CH2PMe2) (2) is favored if the
reaction is performed at low temperatures (10 °C), while the metal-

lacyclopropene (κ1,η2-CH2CC6H4S)Mo(PMe3)4 (3) is favored at high
temperatures (80 °C). This situation reflects a kinetic preference
because the isolated complexes do not interconvert thermally on a
comparable time scale.12 Furthermore, the relative amounts of the two
isomers are influenced by the presence of PMe3, such that the formation
of the metallacyclopropene (κ1,η2-CH2CC6H4S)Mo(PMe3)4 (3) is
inhibited by increasing the concentration of PMe3. These observations
indicate that an important difference in the mechanisms for formation
of (κ1,η2-CH2CC6H4S)Mo(PMe3)4 (3) and (κ1,η2-CH2CHC6H4S)Mo-
(PMe3)3(η2-CH2PMe2) (2) is that isomerization to the metallacyclo-
propene (3) requires a sequence involving reversible dissociation of a
PMe3 ligand prior to the rate-determining step.

Deuterium labeling studies employing d1-2-D-benzothiophene
and d1-3-D-benzothiophene demonstrate that a methylene hydrogen
atom of both (κ1,η2-CH2CHC6H4S)Mo(PMe3)3(η2-CH2PMe2) (2)
and (κ1,η2-CH2CC6H4S)Mo(PMe3)4 (3) is derived from a PMe3

ligand. Furthermore, the reaction of Mo(PMe3)6 with d1-2-D-
benzothiophene at room temperature yields the isotopomer of (κ1,η2-
CHDCHC6H4S)Mo(PMe3)3(η2-CH2PMe2) (2) in which the deute-
rium is selectively located cis to the hydrogen on the adjacent carbon

Scheme 1
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atom.13,14 This labeling pattern is consistent with a mechanism that
involves oxidative addition of C-H bond of a PMe3 ligand,
followed by C-H bond reductive elimination of a {(κ2-
CHCHC6H4S)MoH} intermediate.15,16

Both (κ1,η2-CH2CHC6H4S)Mo(PMe3)3(η2-CH2PMe2) (2) and
(κ1,η2-CH2CC6H4S)Mo(PMe3)4 (3) react with H2 at room temper-
ature to yield Mo(PMe3)4(SC6H4Et)H (4),17,18 thereby achieving
partial hydrogenation of benzothiophene on a molybdenum center.
The relative reactivity of the two isomers, however, differ consider-
ably. Thus, whereas hydrogenation of the former occurs within
minutes, hydrogenation of the latter requires a period of days to
proceed to completion.

The reactivity of Mo(PMe3)6 towards selenophene derivatives
is pertinent towards understanding the mechanisms of HDS because
the products obtained could correspond to different stages of the
reaction coordinate for the thiophene system. As such, an analysis
of the reactivity of the selenophene systems furnishes insight into
the types of transformations that may be achieved by molybdenum
as a component of an HDS catalyst surface. It is, therefore,
interesting that Mo(PMe3)6 reacts with selenophene to give the
metallacyclopentadiene complex [(κ2-C4H4)Mo(PMe3)3(Se)]2-
[Mo(PMe3)4] (5) in which the selenium has been completely
abstracted from the selenophene moiety (Scheme 2).19,20

X-ray diffraction demonstrates that [(κ2-C4H4)Mo(PMe3)3-
(Se)]2[Mo(PMe3)4] (5) possesses an almost linear chain of
Mo-Se-Mo-Se-Mo atoms (Figure 1), in which the Mo-Se bond
lengths for the central molybdenum atom [2.4617(4) and 2.4712(4)
Å] are longer than those for the outer molybdenum atoms [2.3472(4)
and 2.3512(4) Å]. These Mo-Se bond lengths are comparable to
the terminal ModSe bonds in trans-Mo(PMe3)4(Se)2 [2.381(1) Å
and 2.385(1) Å]21 but considerably shorter than a Mo-Se single
bond;22 as such, it is evident that there is a degree of multiple
bonding in the Mo-Se-Mo-Se-Mo chain. An analysis of the
π-molecular orbitals indicates that there is a more significant
π-bonding component for the outer Mo-Se bonds because the in-

phase combinations of selenium 4pz and 4py orbitals of the two
selenium atoms are of appropriate symmetry to interact with 4d
orbitals of the outer molybdenum atoms but are of incorrect
symmetry for the 4dxz and 4dyz orbitals of the central molybde-
num.23,24

The ability of molybdenum to extract selenium from selenophene
and generate the κ2-butadienediyl C4H4 ligand suggests that a similar
process could occur for thiophene on an HDS catalyst surface. The
synthesis of [(κ2-C4H4)Mo(PMe3)3(Se)]2[Mo(PMe3)4] (5), therefore,
indicates that consideration should also be given to HDS mechanisms
that feature cleavage of both C-S bonds prior to hydrogenation. In
this regard, Jones has reported an interesting nickel system where
dibenzothiophene (but not benzothiophene or thiophene) undergoes
desulfurization without any form of hydrogenation.25,26

The reaction of Mo(PMe3)6 with benzoselenophene is
considerably more complex than the reaction with benzothio-
phene, with four products having been isolated. Thus, in addi-
tion to (κ1,η2-CH2CHC6H4Se)Mo(PMe3)3(η2-CH2PMe2) (6) and
(κ1,η2-CH2CC6H4Se)Mo(PMe3)4 (7), which correspond to
two of the species observed in the benzothiophene reaction,
products resulting from C-C coupling, namely [κ2,η4-Se(C6H4)(CH)4-
(C6H4)Se]Mo(PMe3)2 (8) and [µ-Se(C6H4)(CH)C(CH)2(C6H4)]-
(µ-Se)[Mo(PMe3)2][Mo(PMe3)2H] (9), are also formed (Scheme 3).

X-ray diffraction studies demonstrate that [κ2,η4-Se(C6H4)-
(CH)4(C6H4)Se]Mo(PMe3)2 (8) possesses a novel [Se(C6H4)(CH)4-
(C6H4)Se] ligand that may be conceptually viewed as being derived
from C-C coupling of two ring-opened benzoselenophene mol-
ecules. While a similar ligand derived from thiophene has been
observed to link two rhodium centers,27 an interesting feature of
[κ2,η4-Se(C6H4)(CH)4(C6H4)Se]Mo(PMe3)2 (8) is that the
[Se(C6H4)(CH)4(C6H4)Se] ligand coordinates to a single molybde-
num center and effectively occupies four coordination sites of an
octahedral geometry. Specifically, the two selenolate donors occupy
trans sites while the central butadiene component occupies two cis
sites.

The asymmetric dinuclear complex [µ-Se(C6H4)(CH)C(CH)2-
(C6H4)](µ-Se)[Mo(PMe3)2][Mo(PMe3)2H] (9), which also features
a C-C coupled ligand derived from benzoselenophene, can be

Scheme 2

Figure 1. Molecular structure of [(κ2-C4H4)Mo-(PMe3)3(Se)]2[Mo(PMe3)4]
(5).

Scheme 3
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viewed as originating from [Se(C6H4)(CH)4(C6H4)Se] Via a se-
quence that involves both C-Se and C-H bond cleavage reactions.
The bonding in this complex is highly delocalized, but a salient
feature is that the “quaternary” carbon of the [Se(C6H4)-
(CH)C(CH)2(C6H4)] ligand interacts to a similar degree with both
molybdenum atoms, with bond lengths [2.110(2) Å and 2.160(2)
Å] that are comparable to the Mo-aryl interaction [2.107(2) Å].
Furthermore, the Mo-Mo separation [2.7394(3) Å] is in the range
for a single bond, although bond distance alone is not a sufficient
criterion for establishing bond orders in such systems.28

In summary, the reactions of Mo(PMe3)6 with benzothiophene,
selenophene, and benzoselenophene reveal reaction pathways that
are pertinent to the mechanisms of hydrodesulfurization. Of
particular note, cleavage of the C-S bond of benzothiophene results
in the formation of three isomers, namely (κ2-CHCHC6H4S)-
Mo(PMe3)4 (1), (κ1,η2-CH2CHC6H4S)Mo(PMe3)3(η2-CH2PMe2) (2),
and (κ1,η2-CH2CC6H4S)Mo(PMe3)4 (3), thereby providing evidence
for the types of interconversions that may occur on the surface of
an HDS catalyst. Furthermore, Mo(PMe3)6 undergoes a novel
reaction with selenophene to give the metallacyclopentadiene
complex [(κ2-C4H4)Mo(PMe3)3(Se)]2[Mo(PMe3)4] (κ1,η2-CH2-
CHC6H4S)Mo(PMe3)3(η2-CH2PMe2) (5), thereby demonstrating that
the molybdenum is capable of completely abstracting selenium from
the heterocycle.
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